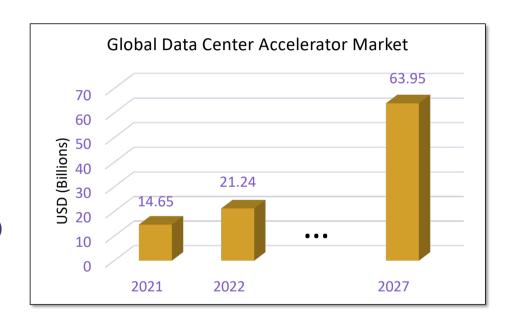


# Engineering

School of Electrical Engineering & Computer Science

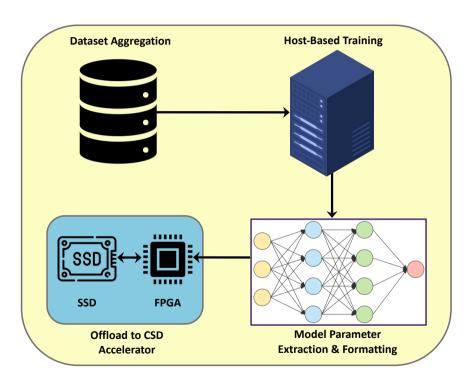



## Accelerating Ransomware Defenses with Computational Storage Drive-Based API Call Sequence Classification





#### **Motivation**

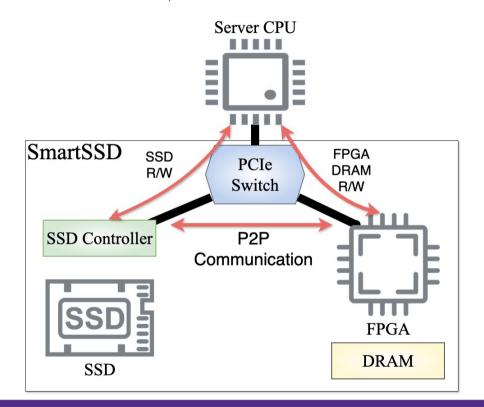

- Deep learning provides vital mechanisms for managing the exponential growth of data within data centers
- Data consumed in data centers has increased from 1.2 trillion GB to 59 trillion GB in the last decade
- CAGR (Compound Annual Growth Rate) of 24.7% in the global data center accelerator market



June 2024 3



#### **Overview & Contributions**



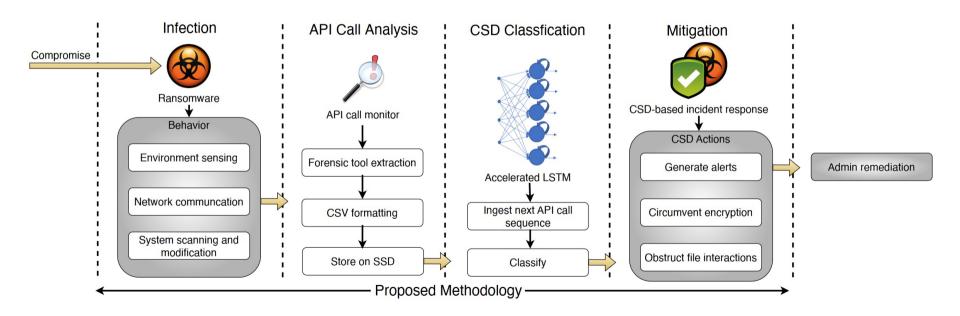

- Unique method for Accelerating deep learning classification via Computational Storage Drives (CSDs)
- Employ several enhancements to improve the model's inference speed, realizing an increase of 344.6x over **NVIDIA's A100 GPU**
- Showcase its capability of promptly and reliably detecting ransomware

June 2024





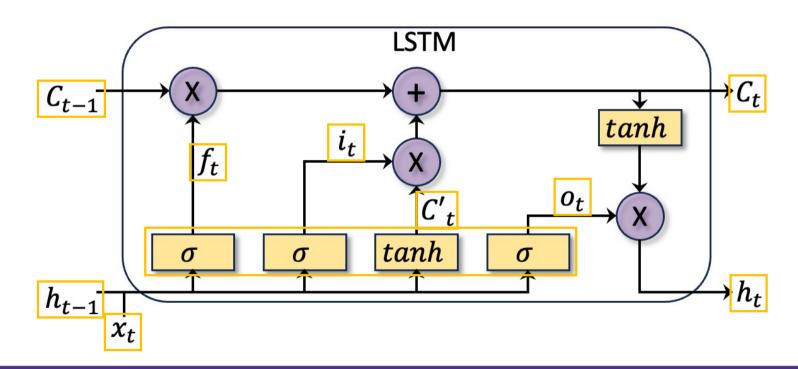



#### **CSD Primer**

- Samsung 4 TB SSD with a Xilinx Kintex UltraScale FPGA
- CPU can issue FPGA computation and DRAM read/write requests
- Supports Peer-to-Peer (P2P) data movement over the internal data path between its NVMe SSD and FPGA
- P2P near-data computation can reduce or eliminate Host-to-SSD and Host-to-FPGA PCIe traffic, as well as related roundtrip latencies and performance degradations
- Enable appreciable energy consumption reduction

June 2024 5

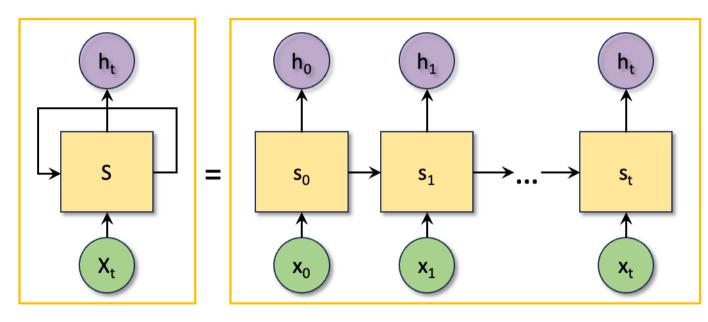



## **Proposed Methodology**



LSU




#### **Model Selection**



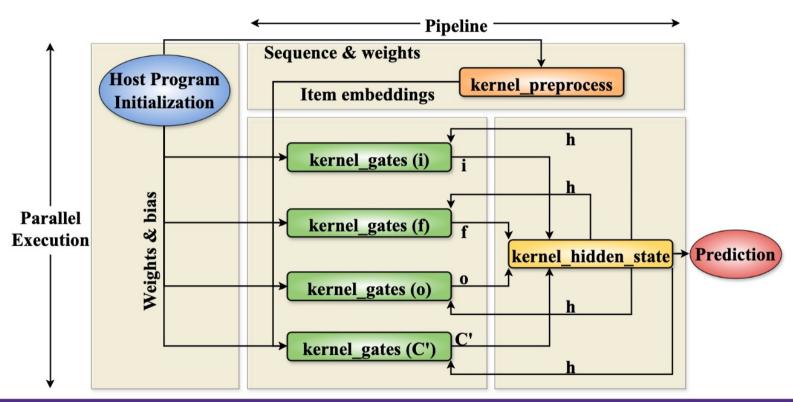


#### College of Engineering School of Electrical Engineering & Computer Science

#### **Advantages of LSTMs**



• 
$$i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$$


• 
$$i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$$
 •  $f_t = \sigma(W_f[h_{t-1}, x_t] + b_f)$  •  $o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$ 

• 
$$o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$$

• 
$$C'_t = tanh(W_{C'}[h_{t-1}, x_t] + b_{C'})$$



## **Kernel Implementation**





## College of Engineering School of Electrical Engineering & Computer Science

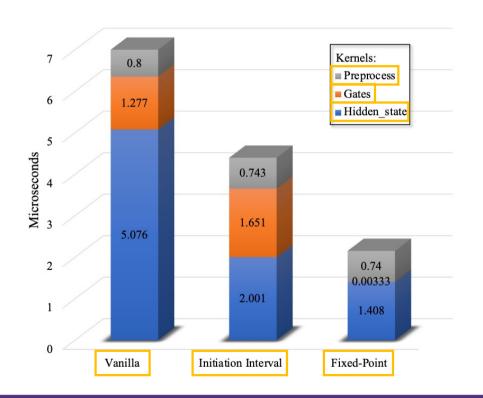
#### Activation functions

• 
$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

• 
$$softsign(x) = \frac{x}{abs(x) + 1}$$

#### Pragmas

- HLS DATAFLOW
- HLS UNROLL
- HLS ARRAY PARTITION
- HLS PIPELINE II=1


## **Optimizations**

#### Fixed-point arithmetic

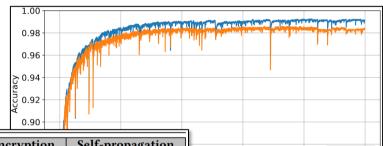
- 10<sup>6</sup> scaling
  - e.g,  $0.6533132 * 10^6 = 653313$
- 10<sup>12</sup> correction upon single multiplication
- 10<sup>6</sup> correction between chained multiplications



#### **FPGA Inference Time**



- Optimizations reduced forward pass time of first iteration from roughly 7.153 μs to 2.15133 μs
- Optimizations compared against an Intel Xeon CPU with 13 GB of RAM and an NVIDIA A100 GPU with 40 GB of video RAM
- Mean forward pass time of proposed approach surpassed the GPU by over 344x


|      | Execution time    | 95% CI                                 |  |
|------|-------------------|----------------------------------------|--|
| FPGA | $2.15133 \ \mu s$ | N/A                                    |  |
| CPU  | 991.57750 $\mu s$ | $217.46576~\mu s$ - $1765.68923~\mu s$ |  |
| GPU  | 741.35336 $\mu s$ | $394.45317~\mu s$ - $1088.25355~\mu s$ |  |

June 2024 11 |



#### **Ransomware Detection**

- Application Programming Interface (API) call sequences are ingested by the LSTM
  - Sequence lengths of 100 were utilized
- LSTM comprised of 7,472 parameters was employed
- Training for 3K epochs gave an accuracy, precision, recall, and F1 of 0.9833, 0.9789, 0.9890, and 0.9840, respectively



| Family        | Instances   | Encryption | Self-propagation |
|---------------|-------------|------------|------------------|
| Ryuk          | 5 variants  | <b>✓</b>   | <b>√</b>         |
| Lockbit       | 6 variants  | ✓          | <b>√</b>         |
| Teslacrypt    | 10 variants | ✓          | ×                |
| Virlock       | 11 variants | ✓          | ✓                |
| Cryptowall    | 8 variants  | ✓          | ×                |
| Cerber        | 9 variants  | ✓          | ×                |
| Wannacry      | 7 variants  | ✓          | <b>√</b>         |
| Locky         | 6 variants  | ✓          | ×                |
| Chimera       | 9 variants  | ✓          | ×                |
| Razy          | 12 variants | ✓          | ×                |
| TorrentLocker | 3 variants  | <b>√</b>   | ×                |
| Bitman        | 6 variants  | ✓          | ×                |
| BadRabbit     | 5 variants  | ✓          | ✓                |

Train Test

D 3000 4000 5000

Epoch

June 2024 12



#### **Questions**

