NERDS:
A Non-Invasive Environment for
Remote Developer Studies

Joe Lewis Kelsey Fulton
jlewis23@umd.edu Kelsey.fulton@mines.edu
University of Maryland, College Park Colorado School of Mines

17t Cyber Security Experimentation and Test Workshop
Tuesday, August 13th 2024
Philadelphia, PA, USA

mailto:jlewis23@umd.edu
mailto:Kelsey.fulton@mines.edu

Outline

* Problem motivation and prior work

e Overview of our system: NERDS

e Case study of using NERDS in two developer studies
* How you can use NERDS

Problem motivation and Prior
Work

We study Developers

* Understanding developers is key to understanding software
vulnerabilities

 Studying developers is challenging, as exact environments are hard to
replicate

Studying developers remotely

Developer studies can be done remotely with a few key tradeoffs:

Advantages

* Larger recruitment pool

* Less time consuming

* Less expensive

e Data collection can be fully
automated

Disadvantages

e Difficult to fully replicate
environment

 Developing online platforms

from scratch is expensive and

time consuming

* No cognitive walkthroughs

Prior Work

* Developer Observatory (Stransky et al., 2017): platform for remote
Python studies
* Forms the basis for our work
 Remote studies were easier and faster than in-person studies
e Data collection limited by nature of remote study

 OLab (Huaman et al., 2022): Provides full remote desktop interface
for remote developer studies

Limitations of Prior Work

* Developer Observatory
* Limited scope — only works with Python studies
* Limited to 20-50 concurrent users
* Users complained about long-wait times to start study

e OLab

* Heavier system than what we needed
* Not open-sourced
* Appears to only be tested with loads < 25 participants

System Overview

Requirements

* Participant Experience
* Experimental Design
* Technical Requirements

Requirements (cont.)

Participant Experience

* Non-invasive: system should place minimal requirements on the
user’s system to participate

* Flexibility: Ability to leave and return the study at any point
* Skip-revisit: Skip and revisit tasks participants are struggling with

Requirements (cont.)

Experimental Design
* Randomization: randomized condition assignment and task order

* Control/Real-world: Researchers should be able to control
environment while replicating real-world environments

* Data collection: Data should be gathered as much as possible without
being over intrusive

 Ethics: Data should be stored securely with a pseudonymous
identifier

Requirements (cont.)

Technical Requirements

* Isolation: full isolation between participants, including access and
DoS

* Scalability: System should handle many concurrent participants at
once

* Adaptability: System should be adaptable to other study designs

Our system: NERDS

What is it?

An environment for hosting browser-based remote developer
studies.

Heavily-modified version of Developer Observatory from Stransky et al.

Technical Overview: Developer Observatory

* Infrastructure handles creating VMs and collecting data
* Participant VM spun up for each participant

Jupyter Notebook
Participant VM

Development environment

Infrastructure

1 AWS VM Participant VM :
Many services Development environment

Jupyter Notebook

Jupyter Notebook

Web traffic Participant VM

Study setup
Participant data
etc.

Development environment

Max 20-50

14

Technical Overview: NERDS

* Major overhaul: change to Docker containers

* Improved scalability and adaptability, while maintaining other regs.

Infrastructure
7 docker containers

Web traffic
Study setup
Participant data
etc.

Participant
Instance

Participant
Instance

Participant
Instance

Web app

Development environment

Web app

Development environment

Web app

Development environment

15

Requirements -

Review

Participant Experience Experimental Technical
* Non-invasive * Randomization * |solation
* Flexibility Control e Scalability
e Skip-revisit * Real-world * Adaptability

e Data collection
 Ethics

NERDS Features

 Totally browser-based system: only requirement is an up-to-date web
browser (non-invasive)

* Participant instances are persistent, cookies used to return user to
their instance (flexibility)

* Development environment is pre-installed and the same across all
participants (control)

e System assigns conditions randomly to users and pre-loads instances
with required files (randomization)

e System automatically collects data in db with a pseudonymous
identifier (ethics)

e Containers are isolated from each other and the infrastructure
(isolation)

Case studies

Case Study: Python study

Used in Write, Read, or Fix? Exploring Alternative Methods for Secure
Development Studies at SOUPS 2024

 Remote study in Python

e Task-based

* Read, write, and fix conditions with two different libraries — total of 6
conditions

* Only write and fix should be able to edit and run code

Participant Instance — Technical Detail

* Modified participant instance
Slightly from St ra nSky et aI. tasKS (unsaved changes) Current task progress: 2 out of 5 A
 arbitrary number of tasks and sub- Add Two Numbers

Your goal for this task is to write a function add two that, given two numbers as arguments,
ta S ks returns their sum. A function prototype and testing code has been provided for your assistance.

In [11: MW def add two(nl, n2):
return nl+n2

G, T ¢ 3 = 0

Testing code below
.

* 141 participants over 1 year period A R O

assert add two(0, 0) = 0, "0 + 0 = O"
print "All tests passed!"

All tests passed!

o @

Hello World

Your goal for this task is to get python to print "Hello World!" without the quotes. Please do not use
any external sources for this task.

=
Skip Task Next Task

Case Study: Python study — Lessons Learned

Things that worked well Things that didn’t work well

* Conducting a remote study was * Some key insights were missed
far easier than an in-person

* Participants can work around the
study

restrictions of the system
* Maintained validity

* Large sample size

Case Study: C study

* Requirements — same as NERDS system plus...
* Coding in Cinstead of Python
* Collect participant search history

* Redesigned participant instance to support C language and a remote
browser

* Currently on-going

Requirements -

Review

Participant Experience Experimental Technical
* Non-invasive * Randomization * |solation
* Flexibility Control e Scalability
e Skip-revisit * Real-world * Adaptability

e Data collection
 Ethics

Participant Instance — Technical Detail

* New C development
enVironment Tasks CODE | BROWSER

Last compile tim

item at 0 ead *item name,

* Based on Visual studio code (real- Additem

In this task, you will be required to select and
edit an Al generated code snippet to perform

ode urrent = *head;
Wo r the following function: add an item to the list {

at the provided index. You may assume that
the head node has been initialized to NULL
and that indexing starts at 1. Please do not

* New WebAssembly C runtime ;===

Task:

+ add an item to the list at the provided

* No code runs on participant

Assumptions:

instance (isolation, scalability)

+ indexing starts at 1
Requirements:

([N eW b u i |t_i n b rowse r + Please do not alter the function header

5
Commands: Output

+ Tab key or next suggestion button: see

* Runs in container, displayed

« Shift+Tab keys: back to previous
suggestion

through noVNC (non-invasive, = Em =B
flexibility)

24

Participant Interface — Remote Browser

CODE BROWSER Connection

Task 5 @ | G Google x| [l Firefox Privacy Notice — x + ~

Add item e O & https:/jwww.google.com/?gws_rd=ss| g ® 9

In FhIS task, you will be reqmred to select and About Store Gmail Images 3
edit an Al generated code snippet to perform

the following function: add an item to the list

at the provided index. You may assume that

the head node has been initialized to NULL O e
and that indexing starts at 1. Please do not

alter the function header.

R
)

Task: Q

« add anitem to the list at the provided

index

Assumptions: Google Search I'm Feeling Lucky

« the head node has been initialized to
NULL
* indexing starts at 1

Requirements:
« Please do not alter the function header
Commands:

* Tab key or next suggestion button: see
next suggestion
» Shift+Tab keys: back to previous

suggestion i . .
\. Our third decade of climate action: join us

- - - Advertising Business How Search works Privacy Terms Settings

Case Study: C Study — Lessons Learned

Things that worked well Things that didn’t work well

e Switching participant instances ¢ Embedded browser may not be
was easy — though development convenient to use

cost was high * Be careful with production

systems ©

How YOU can use NERDS

* All code is released open source on https://joelewiss.github.io/nerds

* Both participant instances are released for Python and C
 Documentation on website
* Developing custom instances

* We would love to hear from you if you’re interested in using our
system

https://joelewiss.github.io/nerds

Key Takeaways

 NERDS is a flexible, open source system for hosting remote developer
studies

* Tested in production with multiple types of studies

* Provides observable advantages to in-person studies with key
tradeoffs

e Available for download and use

https://joelewiss.github.io/nerds

Joe Lewis Kelsey Fulton
jlewis23@umd.edu kelsey.fulton@mines.edu
University of Maryland, College Park Colorado School of Mines

College Park, MD, USA Golden, CO, USA

28

https://joelewiss.github.io/nerds
mailto:jlewis23@umd.edu
mailto:Kelsey.fulton@mines.edu

	Slide 1: Nerds: A Non-Invasive Environment for Remote Developer Studies
	Slide 2: Outline
	Slide 3: Problem motivation and Prior Work
	Slide 4: We study Developers
	Slide 5: Studying developers remotely
	Slide 6: Prior Work
	Slide 7: Limitations of Prior Work
	Slide 8: System Overview
	Slide 9: Requirements
	Slide 10: Requirements (cont.)
	Slide 11: Requirements (cont.)
	Slide 12: Requirements (cont.)
	Slide 13: Our system: NERDS
	Slide 14: Technical Overview: Developer Observatory
	Slide 15: Technical Overview: NERDS
	Slide 16: Requirements - Review
	Slide 17: NERDS Features
	Slide 18: Case studies
	Slide 19: Case Study: Python study
	Slide 20: Participant Instance – Technical Detail
	Slide 21: Case Study: Python study – Lessons Learned
	Slide 22: Case Study: C study
	Slide 23: Requirements - Review
	Slide 24: Participant Instance – Technical Detail
	Slide 25: Participant Interface – Remote Browser
	Slide 26: Case Study: C Study – Lessons Learned
	Slide 27: How YOU can use NERDS
	Slide 28: Key Takeaways

