
Zeya Umayya1, Dhruv Malik1, Arpit Nandi1, Akshat Kumar1, Sareena Karapoola2, Sambuddho1
1IIIT Delhi, 2IIT Madras India

CSET 2024

COMEX: Deeply Observing Application Behavior

on Real Devices

2

Outline
- Android Threat Landscape
- COMEX Modules
- APK Execution Time
- Variety of Data Collection
- Use-case of COMEX Data
- Previous Android Testbeds
- Challenges
- Conclusion

Android

Image source -https://explodingtopics.com/blog/iphone-android-users
3

G
lo

ba
l M

ar
ke

t S
ha

re
 (i

n
%

)

https://explodingtopics.com/blog/iphone-android-users

Increase in

Image source - https://www.statista.com/statistics/1020956/android-app-releases-worldwide/
4

Ap
ps

 R
el

ea
se

d
pe

r M
on

th
 (i

n
K)

https://www.statista.com/statistics/1020956/android-app-releases-worldwide/

Resultant Increase –>

● 18% of clicked phishing emails in 2022 came from a mobile device.
 (Verizon Mobile Security Index 2022)

● 46% organizations that had suffered a mobile-related security breach in 2022 said that app
threats were a contributing factor.

(Verizon Mobile Security Index 2022)

● 9% of organizations suffered a mobile malware attack in 2023.
(Check Point 2023 Cyber Security Report)

5

There is a significant increase in the number of malicious activities by an application.

Resultant Increase –>

● New malware variants in different
categories

● Difficult for analysts

6

M
al

w
ar

e
C

at
eg

or
ie

s

Image source - https://securelist.com/it-threat-evolution-q1-2024-mobile-statistics/112750/

Critical need to understand APKs behaviour to
differentiate between benign and malware to protect

ordinary users.

https://securelist.com/it-threat-evolution-q1-2024-mobile-statistics/112750/

COMEX Testbed

We developed COMEX which is:
● Targeted for real Android devices
● Does not require any type of instrumentation
● Data from all three sources (i.e., OS+Network+Hardware)
● Considers user input
● Basic analysis of the raw data obtained
● Is functional and available for use

7

APK Analysis

Static

8

Dynamic

APK Analysis

- Permissions
- Services
- Intent filters
- Packages, etc.

Static

9

APK Analysis

● Fails in cases of
○ Obfuscated APKs
○ Encrypted APKs
○ Downloader type of

APKs

● True behaviour only
revealed at runtime for
such APKs

Static

10

APK Analysis

Static Dynamic
● Fails in cases of

○ Obfuscated APKs
○ Encrypted APKs
○ Downloader type of

APKs

● True behaviour only
revealed at runtime for
such APKs

● Run the APK in
○ Emulator or,
○ Real-device

● Observe APK specific
events

11

COMEX Design

COMEX Design

AXMod DCoP
Analysis eXecution Module Data Collection Pipeline

COMEX Design

AXMod DCoP

Setup Analysis

Analysis eXecution Module Data Collection Pipeline

AXMod – Analysis Execution Module

Setup Phase
15

AXMod – Analysis Execution Module

Setup Phase
16

AXMod – Analysis Execution Module

17

Setup Phase

18

Setup Phase

AXMod – Analysis Execution Module

AXMod – Analysis Execution Module

19

Setup Phase

AXMod – Analysis Execution Module

20

Setup Phase

AXMod – Analysis Execution Module

Analysis Phase
21

AXMod – Analysis Execution Module

Analysis Phase
22

AXMod – Analysis Execution Module

Analysis Phase
23

AXMod – Analysis Execution Module

Analysis Phase
24

AXMod

AXMod + ?

Can we build an automated pipeline for parallel raw data
collection of a large dataset?

AXMod + ?

DCoP – Data Collection Pipeline

29

DCoP – Data Collection Pipeline

30

DCoP – Data Collection Pipeline

31

DCoP – Data Collection Pipeline

32

DCoP – Data Collection Pipeline

33

DCoP – Data Collection Pipeline

34

COMEX Module I - AXMod

35

To capture maximum APK behavior and, at the same time, maximize the
parallel APK executions, we need an empirically deduced approximate time
duration.

COMEX Module I - AXMod

36

To capture maximum APK behavior and, at the same time, maximize the
parallel APK executions, we need an empirically deduced approximate time
duration.

APK Execution Time?

Code Coverage
The percentage of code traversed during APK execution.

ACVTool
Percentage code covered in each package of the APK

APK Package Types
• Android official packages
• Main APK package
• Third-party packages

37

APK Execution Time?

38

● Code coverage of 500 APKs

APK Execution Time?

39

● Code coverage of 500 APKs

APK Execution Time?
● With varying rates of user-inputs: 5/10/15/20 per sec

40

5 user-inputs/sec

APK Execution Time?
● With varying rates of user-inputs: 5/10/15/20 per sec

5 user-inputs/sec 15 user-inputs/sec
41

APK Execution Time?

42

Execution time ~60 sec with 15 user inputs/sec

Types of Raw Data
● OS data

○ System calls
○ Binder Transactions
○ List of file descriptors
○ Failed applications

● Network data
○ Traffic related features
○ Network statistics

● Hardware data
○ Battery status
○ Procstats

43

Summary of Data Collection

Summary of 1000 APK analysis
● Pipeline details

○ 6 Motorola G40 devices
○ Android v12

● Amount of raw data collected
○ 400 GBs

Variety of Data Collection
OS Level Data - system calls for Benign APKs

Top 20 System Calls

44

Variety of Data Collection
OS Level Data - system calls for Malware APKs

Family - jiagu

45

Variety of Data Collection
OS Level Data - system calls for Malware APKs

Family - smsreg

46

OS Level Data - Binder Transactions

Binder is an inter-process communication (IPC) mechanism in Android OS.

Variety of Data Collection

47

OS Level Data - Binder Transactions

Binder is an inter-process communication (IPC) mechanism in Android OS.

Variety of Data Collection

48

Network Level Data - cumulative packets of 500 Benign + 500 Malware APKs

Variety of Data Collection

Incoming Network Packets

49

Network Level Data - cumulative packets of 500 Benign + 500 Malware APKs

Variety of Data Collection

Outgoing Network Packets

50

Incoming Network Packets

Use-case of COMEX Data

51

● Scale-up data collection for comprehensive analysis
● Enhance detection mechanisms by correlating different data sources

Previous Android Testbeds

52

● All require at least one type of Instrumentation except Simpson et al.
● Although mobSF and AndroPyTool are publicly available and functional but

these are emulator based solutions and does not provide data from all three
sources.

● Rest are either non-functional or do not provide their codebases.

None of them provide data from all three sources.

Challenges

● Providing consistent power to devices

● Non-parallelism in monkeyrunner

● Data Storage

53

Conclusion

● We present COMEX, a testbed for performing dynamic analysis
on real Android devices.

● It does not require instrumentation.

● It is modular in nature -
○ AXMod
○ DCoP

● It provides maximum possible raw data as well as processed
data from all sources - OS + Network + Hardware.

● To promote reproducibility we have made the source code and
analysis scripts public.

https://github.com/zeya2u9/COMEX

54

https://github.com/zeya2u9/COMEX

Extras Ahead

55

56

AXMod Time Analysis

Here "Steps" refer to the steps of setup and analysis phase.

ACVTool Workflow
Steps:

1. Instrument the original APK with ACVTool [instrument --wd <working_dir>]
2. Install the instrumented APK in the Android emulator or device. [install]
3. Activate the app for coverage measurement [activate <package_name>]

(alternatively, [start <package_name>])
4. Test the application (launch it!)
5. Make a snap [snap <package_name>]
6. Apply the extracted coverage data onto the smali code tree [cover-pickles

<package_name> --wd <working_dir>]
7. Generate the code coverage report [report <package_name> --wd <working_dir>]

Code Coverage Analysis

57

Example

Trojan Dropper 2018 sample
09575e22c395f5e538b2987c69d47722bcbe69de969bdd8f7bc2dfa7d979f88a

- Static features:
- Permissions: ACCESS_FINE_LOCATION, ACCESS_NETWORK_STATE, etc.

- Dynamic Features:
- Downloaded files

- ELF library libcom.art.roct.so
- 2 APKs (an adware and a benign file)

Static V/S Dynamic

58

