
Hardening the Internet of
Things: Towards Designing
Access Control for IoT
Devices

RADHIKA UPADRASHTA

CSET’24

Aug 13, 2024

Agenda

Introduction

Internet of Things – General Architecture and Threats

IoT Gateway - Secure Design

Penetration Testing and Results

Conclusion

2

About the Authors

3

Xylem

A water technology company

Florida Institute of
Technology
Professor of Cybersecurity

Attacks against IoT Systems

Insecam website provided access to IoT camera systems worldwide in 2014

- with default credentials or insecure remote services

- Thousands of cameras from 136 countries

Mirai Botnet

- Scanned for IoT devices running on stripped-down Linux OS in 2016

- Infected devices running with default credentials

- Gained access to 65000 devices in 20 hours

4

Why is it important?

Internet of Things (IoT) is growing rapidly

• Attacks against them too

Linux systems are increasingly used in embedded and IoT devices

• Linux-based malware is increasing too

• New attacks like “Living-off-the-land” technique

US White House Administration

• July 2023 – US Cyber Trust Mark

• To educate and inform the customers about the security of IoT devices

How do we design a secure IoT device?

5

General IoT
Architecture

IoT System Architecture

7

Threat Model of an IoT Gateway

Threat Security Control

Unauthorized access to sensitive data Restrict access to data

Obtain unauthorized access to deny

service

Restrict access to firewall, service

configuration

Pivot to other devices Restrict access to firewall and info

about the ecosystem

Gain access to a user role by elevating

privileges

Authorization checks to prevent

elevation

Tamper with Logs Restrict access to sensitive logs

Exploit vulnerable libraries on the

operating system

Have a patch system, validate input

8

Threat Model of an IoT Gateway

Threat Security Control

Unauthorized access to sensitive data Restrict access to data

Obtain unauthorized access to deny

service

Restrict access to firewall, service

configuration

Pivot to other devices Restrict access to firewall and info

about the ecosystem

Gain access to a user role by elevating

privileges

Authorization checks to prevent

elevation

Tamper with Logs Restrict access to sensitive logs

Exploit vulnerable libraries on the

operating system

Have a patch system, validate input

9

Gateway Design

IoT Gateway Design

Embedded device

• ARMv5 processor, Under 500MHz, 128/256MB RAM

• Running Yocto Project-based Linux

• Using Two Linux Security Modules (LSMs) – TOMOYO and CaitSith

• Multiple user roles

No external security solutions

Secure by design

11

System Hardening Layers

12

L1: Yocto Project

Open-Source Project to create customized Linux distribution system for several hardware

architectures

Grew from the OpenEmbedded Project

Widely used in Embedded and IoT devices

Provides a set of tools to customize and build the Linux environment

13

Yocto Project Components

14

Core build system

+ Build engine

Build instruction

files (recipes) +

collection of recipes

(layers)

Layers of third-party

libraries for various

services

Gateway-specific

instruction files

L2: Customizing the File System

Removed unnecessary libraries

• No X11 packages since there is no GUI in embedded devices

• Debian: general purpose distribution with all features

• Yocto: Customizing reduces the size and the attack surface

Additional customization

• File system is made read-only

- Done by setting the read-only-rootfs property in the Yocto recipe/build config file

- Prevents modifying the system binaries

- Explicitly configure where to write

15

Linux Security Modules (LSM)

LSM framework provides extensions for security checks

LSM: code compiled directly into Linux Kernel to implement access control

Major LSMs in the official kernel: AppArmor, SELinux, Smack, and TOMOYO

Only one major LSM can be enabled (as of Linux Kernel 4.19)

Linux “Capabilities” module is always enabled in the distro

Selected at

 build time using CONFIG_DEFAULT_SECURITY argument

 boot time using “security=“ kernel argument

16

LSMs in our IoT Gateway

TOMOYO as the major LSM compiled into the kernel

CaitSith as the external LSM

 can run with another major LSM

 loaded last and comes last in the order of execution

Why not SELinux?

• Performance

• SELinux stores the policy in the inode’s extended attributes

• Granularity of the policies slows down embedded devices that are resource-constrained

17

L3: TOMOYO LSM

Sponsored by NTT Data Corporation

Enforces Mandatory Access Control by focusing on the

behavior of the system

Domain: the process execution tree based on the sequence

of execution

Domain for “ls” command

18

<kernel> /bin/sh /bin/ls

TOMOYO LSM Setup

S
te

p
 1 Run in Self-

Learning Mode

- Domains are
identified and
rules are
generated

S
te

p
 2 Load the

Ruleset into the
Kernel

- Snapshot of the
rules cleaned,
abstracted, and
hardcoded in the
Kernel

S
te

p
 3 Disable the

Self-Learning
mode.

- Prevents
changing the
ruleset

19

TOMOYO Features

TOMOYO Feature Desired Security Control

fine-grained control to restrict elevating

privileges to effective UID=0

Principle of Least Privilege

Enforce Role-Based Access Control by

dividing privileges into custom groups

Authorization

Prevent tampering of /dev filesystem by

checking the attributes

Integrity

Restrict services through ACLs Authorization and Confidentiality

Create firewall per application (Implicit

deny per domain)

Access Control

20

TOMOYO Policy Example - sudo

21

Sudo from a local login shell Sudo from a remote login shell

<kernel> /bin/sh /usr/bin/sudo <kernel> /usr/sbin/sshd /bin/sh /usr/bin/sudo

ALLOW LOCAL SUDO DENY REMOTE SUDO

L4: CaitSith LSM

22

Sponsored by NTT Data Corporation

Derived from TOMOYO but the policy syntax is different

TOMOYO and CaitSith complement each other

TOMOYO Rules CaitSith Rules

What a domain can do Who can access files and programs at

the Kernel level

Acts on the subject Restrict access on the object

23

TOMOYO CaitSith

Run snmpd only when

started as a child to init-

manager which is started by

Kernel

• Limit access to port 161

or 162 to only snmpd

• Limit snmpd only to be

able to open port 161 or

162

snmpd Example

CaitSith Rule Example

24

Priority of the ACL when there are multiple ACLs

Name of the action

Decision priority when there are multiple

decisions within an ACL

Explicit allow or deny

TOMOYO and CaitSith

25

TOMOYO CaitSith

Monitor logged-in users and running processes on the filesystem

✓ Access

Control

✓ Authorization

✓ Integrity

✓ Availability

L5: Additional Security Controls

Noexec, nodev,
nosetuid options for

tmpfs and log
partitions

tmpfs kept small to
prevent download of

software

No root login or sudo
access. Login

through SSH certs
by a trusted CA

Dynamic user
creation after SSH
login using SSH

certs, removed on
logout

All config files
readable by system

services only

26

Pentest!

27

Pentest Scope

Only the IoT gateway was in scope.

Two user accounts

➢ Fully-privileged (all roles)

➢ Unprivileged (no roles)

To test:

✓ Confidentiality of sensitive info

✓ Integrity of files and services

✓ Availability of services

28

Confidentiality

AvailabilityIntegrity

Testbed Changes

When the pentest started, the testbed could not

be found.

➢ No ping

➢ No nmap

CAUSE: The gateway was blocking all

connections.

CHANGE: The pentest was done by using the

CDN as the jumpbox.

SSH certs generated for users on the CDN.

29

Pen tester

Jump box

Pentest Results - Confidentiality

30

Pentest Results - Integrity

31

Pentest Results - Availability

32

Conclusion

Developed a secure IoT Gateway

- Using TOMOYO and CaitSith LSMs

- Implementing comprehensive access control using the LSMs

- Facilitating user and application restrictions

Discussed the results of a penetration test

This is a feasible approach to secure resource-constrained devices!

33

Thank you!

34

	Xylem Template
	Slide 1: Hardening the Internet of Things: Towards Designing Access Control for IoT Devices
	Slide 2: Agenda
	Slide 3: About the Authors
	Slide 4: Attacks against IoT Systems
	Slide 5: Why is it important?
	Slide 6: General IoT Architecture
	Slide 7: IoT System Architecture
	Slide 8: Threat Model of an IoT Gateway
	Slide 9: Threat Model of an IoT Gateway
	Slide 10: Gateway Design
	Slide 11: IoT Gateway Design
	Slide 12: System Hardening Layers
	Slide 13: L1: Yocto Project
	Slide 14: Yocto Project Components
	Slide 15: L2: Customizing the File System
	Slide 16: Linux Security Modules (LSM)
	Slide 17: LSMs in our IoT Gateway
	Slide 18: L3: TOMOYO LSM
	Slide 19: TOMOYO LSM Setup
	Slide 20: TOMOYO Features
	Slide 21: TOMOYO Policy Example - sudo
	Slide 22: L4: CaitSith LSM
	Slide 23
	Slide 24: CaitSith Rule Example
	Slide 25: TOMOYO and CaitSith
	Slide 26: L5: Additional Security Controls
	Slide 27: Pentest!
	Slide 28: Pentest Scope
	Slide 29: Testbed Changes
	Slide 30: Pentest Results - Confidentiality
	Slide 31: Pentest Results - Integrity
	Slide 32: Pentest Results - Availability
	Slide 33: Conclusion
	Slide 34: Thank you!

