
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Towards a High Fidelity Training Environment
for Autonomous Cyber Defense Agents

Sean Oesch Amul Chaulagain Brian Weber

UT-Battelle Business Sensitive 

Cory Watson Matthew Dixson

Advisors: Edmon Begoli, Ryan Adamson, Maria McClelland, Ben Mintz

Phillipe Austria



22 Open slide master to edit

BLUF

• We've built a cybersecurity RL simulation environment, and we 
want you to try it:

– https://github.com/ORNL/cyberwheel



33 Open slide master to edit

Overview

• RL Intro and Simulator Goals

• Simulator Design

• Proof-of-concept testing



44 Open slide master to edit

How Reinforcement Learning Works

• RL - how to map situations to actions to maximize a numerical reward signal

• RL uses a policy, a reward signal, a value function, and, optionally, a model 
of the environment

• Deep Learning – learn good representations of your data without feature 
engineering and efficiently optimize for end loss (gradients)

Basic Diagram of Reinforcement Learning – KDNuggets



55 Open slide master to edit

Example: Chess

• Environment: Chess board

• Agent: Black/White

• Action: Legal chess moves

• Reward Function:

– (+): taking pieces, gaining 
board space, taking enemy 
king, etc.

– (-): taken pieces, losing board 
space, losing own king, etc.

• Observation Space: State of 
the board



66 Open slide master to edit

Challenges with RL for Network Defense

• Computer networks are 
complex and dynamic 
environments

• The “game” is not 
always well-defined

• Arbitrary reward 
function

• Unconstrained action 
space



77 Open slide master to edit

Agent Goals

• Be adaptable

– To different deployment environments

– To a dynamic network topology

– To varying adversary goals and TTPs

– To differing defensive goals (CIA triangle)

– To differing organizations' defensive capabilities

• Be deployable

– Regardless of an organizations existing stack

– In a reasonable amount of time, without disruption



88 Open slide master to edit

Existing Simulator Shortcomings

• Limited Scope & Scalability: Narrow focus, poor scalability, and 
lack of parallel support hinder research flexibility

• Poor Usability & Extensibility: Outdated code, convoluted 
design, and absent documentation impede development

• Missing Features: Core functionalities promised in papers or 
Readmes are not implemented

• Lack of Real-World Relevance: Insufficient granularity and 
absence of open access limit practical application

• Impractical Observation Space: Observations drawn directly 
from network state – agent acting as a detector too



99 Open slide master to edit

Simulator Goals

• Train agents with vast and diverse experience during training

– Simulation performance increases training volume

– Easily generate diverse and realistic networks

– Easily build red agents with differing goals and TTPs

– Easily extend and limit blue agent capabilities during training

• Provide a pragmatic balance of granularity and tractability

– Utilize industry knowledge graphs and taxonomies where possible

– Realistic network simulation

• Train agents which integrate easily with existing defense stacks

– Agents draw observations from the SIEM, not directly from hosts on the 
network

– Agent should be able to adapt to varying detector fidelity



Cyberwheel Simulator 
Design



1313 Open slide master to edit

Network Simulation

• Network comprised of routers, subnets, and hosts represented 
as nodes in networkx graph

• Routers manage network traffic between subnets

• Subnets represent a broadcast domain

• Hosts are machines/devices that belong to a subnet

– contain list of running services with ports, cves, etc.



1414 Open slide master to edit

Network Configuration

• Networks configured with YAML files

– defines routers, hosts, subnets

– Can reference host types and services 
defined in separate configs

• Developed config generator

– allows ad-hoc network generation with 
various sizes

– simplifies training on different networks

Example network_config.yaml

Example service_config.yaml

Example host_type_config.yaml



1515 Open slide master to edit

Observation Space – Detectors and Alerts

• Red actions generate Base Alerts which contain:

– The source host: the host performing the red action

– The destination host(s): the hosts targeted by the red action

– Services: the service(s) that are being used by the red action

– Techniques: MITRE ATT&K technique(s) associated with this action

– etc

• Detectors act as a filter to these alerts and are intended to 
model things like NIDS (Network Intrusion Detection System) and 
HIDS (Host Intrustion Detection System).



1616 Open slide master to edit

Observation Space – Detectors and Alerts

• Detectors can filter out Alerts, add noise, or even create false-
positive Alerts

• Multiple detectors can be used together to capture different 
red agent behaviors and mimic real-world deployments

• Detectors' Alerts are converted into an observation vector the 
RL agent can use

• Detectors have a simple interface to easily extend and build 
realistic models of detector behavior



1717 Open slide master to edit

Example

• Malicious software on host A exploits a vulnerable service on 
neighboring host B

Red 
Action

Base 
alert

Detector 
Layer

HID

NID1

NID2

Malware 
on Host A

Observation 
Layer

No Alert

Host C 
exploited

Observation

Agent



1818 Open slide master to edit

Extensible Action Spaces

• Easily create and add new blue agent actions

• Action spaces configurable via YAML



1919 Open slide master to edit

Atomic Red Team (ART) - Based Red Actions

• ART Technique

– Mitre ID

– Killchain Phase(s)

– Exploitable CVEs

– Atomic Tests to 
execute attack

• list of commands to run 
attack

DLL Side-Loading Technique
Mitre ID: T1574.002
Kill Chain Phases: Persistence, Privilege Escalation, Defense Evasion
CVE List: CVE-2021-37214, CVE-2022-41874, CVE-2023-28628, CVE-2022-27778, 
CVE-2021-37212, CVE-2022-28198, CVE-2023-28643, CVE-2023-42451, CVE-2021-
37213, CVE-2021-37215, CVE-2022-31089, CVE-2020-26233 

Atomic Tests:
DLL Side-Loading using the Notepad++ GUP.exe binary
Supported Platforms: Windows
Input Arguments:

• process_name: calculator.exe
• gup_executable: PathToAtomicsFolder\T1574.002\bin\GUP.exe

Dependencies: Gup.exe binary must exist on disk at specified location
Commands (shown below):

New-Item -Type Directory (split-path "#{gup_executable}") -ErrorAction ignore | Out-Null

Invoke-WebRequest "https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1574.002/bin/GUP.exe?raw=true" -OutFile "#{gup_executable}”

if (Test-Path "#{gup_executable}") {exit 0} else {exit 1}

"#{gup_executable}”

taskkill /F /IM #{process_name} >nul 2>&1

List of commands necessary for attack



Cyberwheel Proof-of-
Concept Experiments



2121 Open slide master to edit

Blue Agent – Cyber Deception

• Defender focused on deploying decoy hosts on network to 
detect red agent position and slow progress

• Actions

– Deploy decoy

– Isolate decoy

– Remove decoy

– Isolate host

– Restore host

• Each action has an associated immediate and recurring cost

• Rewards and costs defined based on Blue Agent goals



2222 Open slide master to edit

Red Agent

• Defines kill chain as 
sequence of attack

• Configurable exploration 
strategy

– Impact all servers on network

– Impact specific host on 
network

– Impact all hosts

• Long-term goal is to make 
the red agent RL-based as 
well



2323 Open slide master to edit

Evaluation – Cyber Deception

• Training blue agent to deploy decoys to detect and slow 
red agent attack progress

Attack in network with no defender agent Attack in network with trained decoy agent – red 
agent impacts decoy instead of server host



2424 Open slide master to edit

Simulator Scalability Performance



2525 Open slide master to edit

Emulation Design

1. Scenario Converter – converts a scenario (i.e., network configuration) file to a Firewheel plugin file.

2. Action Controller – sends commands to attacker and defender hosts (virtual machines) to execute actions.

3. Observation Converter – converts logs from Firewheel emulator to an observation space vector.
 

1.

2. 3.

• High-fidelity environment to 
evaluated RL Agent

• Firewheel Emulator – testbed 
developed by Sandia National 
Laboratory to emulate large-scale 
networks and perform repeatable 
experiments

• Three main modules in our 
emulation environment



2626 Open slide master to edit

Future work

• "Turning up the difficulty"

• Scale up training

– Curriculum learning

• Transferring simulator-trained agents to emulator for testing on 
emulated networks, ideally with minimal or no retraining

• Transferring simulator-trained, emulator-tested agents to real 
networks for testing and deployment

• Adding support in simulator for RL based red agents

• Building out the library of available red/blue actions 



Discussion



Supplemental Material



3030 Open slide master to edit

Reward Function

• Rewards are gained each step as defined by a reward 
function

• Takes the results from the blue and red actions and calculates 
the final reward

• Action can produce two types of rewards:

– Immediate- the reward gained this step. Simulates immediate impacts 
to the network

– Recurring-  the reward gained this step and on future steps. Simulates 
lasting impacts to the network,

• Possible for actions to remove recurring rewards



3131 Open slide master to edit

ART Agent Logic

• ART Agent Killchain:

– Pingsweep, Portscan, Discovery, Privilege Escalation, Impact

– Lateral Movement used to move between hosts as needed

• When running a Killchain Phase on a Host, it chooses an ART 
Technique that:

– supports the Host OS

– Is part of that killchain phase

– Can exploit a CVE on the target Host

• This allows a Killchain Phase attack to translate into executable 
commands


	Slide 1: Towards a High Fidelity Training Environment for Autonomous Cyber Defense Agents
	Slide 2: BLUF
	Slide 3: Overview
	Slide 4: How Reinforcement Learning Works
	Slide 5: Example: Chess
	Slide 6: Challenges with RL for Network Defense
	Slide 7: Agent Goals
	Slide 8: Existing Simulator Shortcomings
	Slide 9: Simulator Goals
	Slide 12: Cyberwheel Simulator Design
	Slide 13: Network Simulation
	Slide 14: Network Configuration
	Slide 15: Observation Space – Detectors and Alerts
	Slide 16: Observation Space – Detectors and Alerts
	Slide 17: Example
	Slide 18: Extensible Action Spaces
	Slide 19: Atomic Red Team (ART) - Based Red Actions
	Slide 20: Cyberwheel Proof-of-Concept Experiments
	Slide 21: Blue Agent – Cyber Deception
	Slide 22: Red Agent
	Slide 23: Evaluation – Cyber Deception
	Slide 24: Simulator Scalability Performance
	Slide 25: Emulation Design
	Slide 26: Future work
	Slide 28: Discussion
	Slide 29: Supplemental Material
	Slide 30: Reward Function
	Slide 31: ART Agent Logic

